Chunking Programming Model

Service developers can specify which messages are to be chunked by applying the ChunkingBehavior attribute to operations within the contract. The attribute exposes an AppliesTo and SendingTypes propertys. AppliesTo property allows the developer to specify whether chunking applies to the input message, the output message or both. SendingTypes property allows the developer to choose the chunking of the message (SendingTypes.SendStream is default chunking).
The following example shows the usage of ChunkingBehavior attribute:

[ServiceContract]

 interface ITestService

 {

 [OperationContract]

 [ChunkingBehavior(ChunkingAppliesTos.Both)]

 Stream EchoStream(Stream stream);

 [OperationContract]

 [ChunkingBehavior(ChunkingAppliesTos.OutMessage,SendingTypes.SendStream)]

 Stream DownloadStream();

 [OperationContract()]

 [ChunkingBehavior(ChunkingAppliesTos.InMessage)]

 void UploadStream(Stream stream);

 [OperationContract()]

 [ChunkingBehavior(ChunkingAppliesTos.InMessage, SendingTypes.Other)]

 void UploadString(String stream);

 }
From this programming model, the ChunkingBindingElement compiles a list of action URIs that identify messages to be chunked. The action of each outgoing message is compared against this list to determine if the message should be chunked or sent directly.

Implementing the Send Operation

At a high level, the Send operation first checks whether the outgoing message must be chunked and, if not, sends the message directly using the inner channel.

If the message must be chunked as SendingTypes.SendStream or SendingTypes.SendString, Send creates a new ChunkingWriter and calls WriteBodyContents on the outgoing message passing it this ChunkingWriter. The ChunkingWriter then does the message chunking (including copying original message headers to the start chunk message) and sends chunks using the inner channel.

A few details worth noting:

· Send first calls ThrowIfDisposedOrNotOpened to ensure the CommunicationState is opened.

· Sending is synchronized so that only one message can be sent at a time for each session. There is a ManualResetEvent named sendingDone that is reset when a chunked message is being sent. Once the end chunk message is sent, this event is set. The Send method waits for this event to be set before it tries to send the outgoing message.

· Send locks the CommunicationObject.ThisLock to prevent synchronized state changes while sending.

· The timeout passed to Send is used as the timeout for the entire send operation which includes sending all of the chunks.

· The custom XmlDictionaryWriter design was chosen to avoid buffering the entire original message body. If we were to get an XmlDictionaryReader on the body using message.GetReaderAtBodyContents the entire body would be buffered. Instead, we have a custom XmlDictionaryWriter that is passed to message.WriteBodyContents. As the message calls WriteBase64 or WriteString on the writer, the writer packages up chunks into messages and sends them using the inner channel. WriteBase64 or WriteString blocks until the chunk is sent.

Implementing the Receive Operation

At a high level, the Receive operation first checks that the incoming message is not null, that its action is the ChunkingAction and SendingTypes. If it does not meet first two criteria, the message is returned unchanged from Receive. If SendingTypes was Stream, Receive creates a new ChunkingReader and a new ChunkingMessage wrapped around it (by calling GetNewChunkingMessage). Before returning that new ChunkingMessage, Receive uses a threadpool thread to execute ReceiveChunkLoop, which calls innerChannel.Receive in a loop and hands off chunks to the ChunkingReader until the end chunk message is received or the receive timeout is hit.

A few details worth noting:

· Like Send, Receive first calls ThrowIfDisposedOrNotOepned to ensure the CommunicationState is Opened.

· Receive is also synchronized so that only one message can be received at a time from the session. This is especially important because once a start chunk message is received, all subsequent received messages are expected to be chunks within this new chunk sequence until an end chunk message is received. Receive cannot pull messages from the inner channel until all chunks that belong to the message currently being de-chunked are received. To accomplish this, Receive uses a ManualResetEvent named currentMessageCompleted, which is set when the end chunk message is received and reset when a new start chunk message is received.

· Unlike Send, Receive does not prevent synchronized state transitions while receiving. For example, Close can be called while receiving and waits until the pending receive of the original message is completed or the specified timeout value is reached.

· The timeout passed to Receive is used as the timeout for the entire receive operation, which includes receiving all of the chunks.

· If the layer that consumes the message is consuming the message body at a rate lower than the rate of incoming chunk messages, the ChunkingReader buffers those incoming chunks up to the limit specified by ChunkingBindingElement.MaxBufferedChunks. Once that limit is reached, no more chunks are pulled from the lower layer until either a buffered chunk is consumed or the receive timeout is reached.

CommunicationObject Overrides

OnOpen

OnOpen calls innerChannel.Open to open the inner channel.

OnClose

OnClose first sets stopReceive to true to signal the pending ReceiveChunkLoop to stop. It then waits for the receiveStopped ManualResetEvent, which is set when ReceiveChunkLoop stops. Assuming the ReceiveChunkLoop stops within the specified timeout, OnClose calls innerChannel.Close with the remaining timeout.

OnAbort

OnAbort calls innerChannel.Abort to abort the inner channel. If there is a pending ReceiveChunkLoop it gets an exception from the pending innerChannel.Receive call.

OnFaulted

The ChunkingChannel does not require special behavior when the channel is faulted so OnFaulted is not overridden.

Implementing Channel Factory

The ChunkingChannelFactory is responsible for creating instances of ChunkingDuplexSessionChannel (if we are using TCP or NET PIPE) and for cascading state transitions to the inner channel factory.

OnCreateChannel uses the inner channel factory to create an IDuplexSessionChannel inner channel. It then creates a new ChunkingDuplexSessionChannel passing it this inner channel along with the list of message actions to be chunked and the maximum number of chunks to buffer upon receive. The list of message actions to be chunked and the maximum number of chunks to buffer are two parameters passed to ChunkingChannelFactory in its constructor. The section on ChunkingBindingElement describes where these values come from.

The OnOpen, OnClose, OnAbort and their asynchronous equivalents call the corresponding state transition method on the inner channel factory.

Implementing Channel Listener

The ChunkingChannelListener is a wrapper around an inner channel listener. Its main function, besides delegate calls to that inner channel listener, is to wrap new ChunkingDuplexSessionChannels around channels accepted from the inner channel listener. This is done in OnAcceptChannel and OnEndAcceptChannel. The newly created ChunkingDuplexSessionChannel is passed the inner channel along with the other parameters previously described.

Implementing Binding Element and Binding

ChunkingBindingElement is responsible for creating the ChunkingChannelFactory and ChunkingChannelListener. The ChunkingBindingElement checks whether T in CanBuildChannelFactory<T> and CanBuildChannelListener<T> is of type IDuplexSessionChannel (the only channel supported by the chunking channel) and that the other binding elements in the binding support this channel type.

BuildChannelFactory<T> first checks that the requested channel type can be built and then gets a list of message actions to be chunked. For more information, see the following section. It then creates a new ChunkingChannelFactory passing it the inner channel factory (as returned from context.BuildInnerChannelFactory<IDuplexSessionChannel>), the list of message actions, and the maximum number of chunks to buffer. The maximum number of chunks comes from a property called MaxBufferedChunks exposed by the ChunkingBindingElement.

BuildChannelListener<T> has a similar implementation for creating ChunkingChannelListener and passing it the inner channel listener.

Determining Which Messages To Chunk

The chunking channel chunks only the messages identified through the ChunkingBehavior attribute. The ChunkingBehavior class implements IOperationBehavior and is implemented by calling the AddBindingParameter method. In this method, the ChunkingBehavior examines the value of its AppliesTo property (InMessage, OutMessage or both) to determine which messages should be chunked. It then gets the action of each of those messages (from the Messages collection on OperationDescription) and adds it to a string collection contained within an instance of ChunkingBindingParameter. It then adds this ChunkingBindingParameter to the provided BindingParameterCollection.

This BindingParameterCollection is passed inside the BindingContext to each binding element in the binding when that binding element builds the channel factory or the channel listener. The ChunkingBindingElement's implementation of BuildChannelFactory<T> and BuildChannelListener<T> pull this ChunkingBindingParameter out of the BindingContext’s BindingParameterCollection. The collection of actions contained within the ChunkingBindingParameter is then passed to the ChunkingChannelFactory or ChunkingChannelListener, which in turn passes it to the ChunkingDuplexSessionChannel.

